# Chapter 5: Inflation: Its Causes, Effects, and Social Costs

Prof. Dr. Georg Stadtmann stadtmann@europa-uni.de

# Chapter 5: Inflation

Introduction Some remarks

3

- 5.1 Quantity Theory of Money
- Transaction and the Quantity Equation
- From transactions to income
- Money demand & quantity equation
- Assumption of constant velocity

5.2 Seigniorage: The revenues from printing money

- 5.3 Inflation and interest rates
- Fisher equation
- Two real interest rates: Ex ante versus ex post
- 5 5.4 The nominal interest rate and the demand for money
  - Cost of holding money
  - Future money and current prices

#### 6 5.5 The social cost of inflation

- Lavman's view
- Cost of expected inflation
- Cost of unexpected inflation
- Benefits of inflation



5.6 Hyperinflation Cost of hyperinflation

#### Some remarks

# Introduction

- Inflation: Overall increase in prices
- This chapter: Classical theory: Focus on the long run effects: *Prices* are flexible
- Chapter 10: Short run: Many prices are sticky.
- To understand inflation, we have to understand money.

### Quantity equation

#### Money · Velocity = Price · Transactions

$$M \cdot V = P \cdot T \tag{2}$$

(1)

# Lolek & Bolek on the campsite



### Lolek & Bolek in the supermarket

- Lolek and Bolek make holidays on a campsite.
- Both walk (they don't have a car!) over to the next supermarket (5 km).
- They buy a box of beer with T = 20 cans.



#### Lolek & Bolek on their way back

- On their way back, Lolek becomes thirsty.
- He has still M = 4 EUR in his pockets.
- Lolek asks Bolek, whether he can buy a beer from him.
- Bolek agrees and fixes the price to P = 2 EUR/can.



### Lolek & Bolek drink even more

- Lolek drinks the first beer but "you can not stand on one leg" (Auf einem Bein kann man nicht stehen!)
- Lolek is still thirsty and decides to buy a second beer...
- A few minutes later Bolek also becomes thirsty.
- Since he has 4 EUR in his pockets now... Bolek decides to buy 2 beers from Lolek!

#### Lolek & Bolek back on the campsite

- A few hours later, they are back on the campsite.
- The box of beer is empty.
- And Lolek and Bolek are drunk!



### Lolek & Bolek: Open questions

- How can money supply of 4 EUR finance transactions with a value of  $P \cdot T = 2 \cdot 20 = 40$  EUR?
- How often has money changed the hands?
- In other words: How large is the *velocity* of money?

### Quantity equation

$$Money \cdot Velocity = Price \cdot Transactions \tag{3}$$

V: Transactions velocity of money

$$M \cdot V = P \cdot T \tag{4}$$

When it comes to Lolek & Bolek:

$$V = \frac{P \cdot T}{M} = \frac{2 \cdot 20}{4} = 10$$
 (5)

# Quantity equation

$$M \cdot V = P \cdot T \tag{6}$$

- The quantity equation is an identity.
- It always has to hold!
- When one of the variables changes, one or more of the other variables must also change.
- In the Lolek & Bolek example:
- When money supply increases: (Most likely)  $\Rightarrow$  Velocity will decrease!

#### Inserting output instead of transactions

$$Money \cdot Velocity = Price \cdot Output \tag{7}$$

$$M \cdot V = P \cdot Y \tag{8}$$

V: Income velocity of money

### Inserting output instead of transactions

- Real money balance:  $\frac{M}{P}$
- Measures the purchasing power of the stock of money.
- Lolek & Bolek  $\frac{M}{P} = \frac{4 \text{ EUR}}{2 \text{ EUR/beer}} = 2 \text{ beers}$
- Current money balance is large enough to finance 2 beers.
- Money demand function:

$$\frac{M^d}{P} = k \cdot Y \tag{9}$$

# Difference & "relationship" between marginal propensity to consume and money demand

Let's assume that

- one household has a monthly income of Y = 2000 EUR and
- the marginal propensity to consume is  $c_1 = 0.8$ .
- The consumption function is given by  $C = c_1 \cdot Y$  (autonomous component of consumption is zero).
- The household is spending 1.600 EUR per month.
- The salary is paid on a weekly basis.
- Therefore, the household is walking once a week to the ATM.
- Money demand is only  $\frac{M^d}{P} = 400$  EUR.

$$\frac{M^d}{P} = k \cdot Y \quad \Rightarrow \quad 400 = k \cdot 2000 \tag{10}$$

Difference & "relationship" between marginal propensity to consume and money demand

$$\frac{M^d}{P} = k \cdot Y \quad \Rightarrow \quad 400 = k \cdot 2000$$

• The parameter k = 0.2.

Difference & "relationship" between marginal propensity to consume and money demand

- There is a relationship between consumption and money demand!
- But most important insight: Payment habits influence money demand
- Assumption of the <u>classical</u> theory: Payment habits are pretty stable in the short run.
- Therefore: Money demand function is pretty stable!

#### Money demand = money supply

$$\frac{M}{P} = k \cdot Y \tag{11}$$

$$M \cdot \left(\frac{1}{k}\right) = P \cdot Y \tag{12}$$

$$M \cdot V = P \cdot Y$$
 with  $V = \frac{1}{k}$  (13)

- Velocity is influenced by money demand and the payment habits of the economy.
  - When people want to hold only little money (k is small)
  - money changes hands frequently (V is large).
- Hyperinflation

#### Money demand = money supply

Quantity equation:

$$M \cdot V = P \cdot Y \tag{14}$$

Quantity equation, written in percentage-change form:

$$\Delta M\% + \Delta V\% = \Delta P\% + \Delta Y\% \tag{15}$$

In case that velocity is constant:

$$M \cdot \bar{V} = P \cdot Y \tag{16}$$

$$\Delta M\% + 0 = \Delta P\% + \Delta Y\% \tag{17}$$

Solving for the inflation rate:

$$\Delta P\% = \Delta M\% - \Delta Y\% \tag{18}$$

| ~  | <u><u> </u></u> |       |    |
|----|-----------------|-------|----|
| G. | Stac            | Itmar | ın |
|    |                 |       |    |

5. Inflation

#### Money demand = money supply

 $\Delta P\% = \Delta M\% - \Delta Y\%$ 

- The growth rate of GDP is given by the change in the labor force and the change in capital.
- Let's assume that growth rate of output is a constant:
- $\Delta Y\% = \alpha$

$$\Delta P\% = -\alpha + 1 \cdot \Delta M\% \tag{19}$$

- The quantity theory of money states that the central bank, which controls the money supply, has ultimate control over the rate of inflation.
- If the central bank keeps the growth rate of money supply stable, inflation will be stable.

# Money supply & Inflation (USA)



# Money supply & Inflation (Cross section)



Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

# Why does a central bank print too much money?

How can government finance its spending?

- 1. Taxes
- 2. Borrowing by issuing bonds
- 3. Print money (= Print bonds and 'sell' them to the central bank)













- When government prints money: Inflation!
- Why inflation tax? Who is taxed?
- The holders of money are taxed, because the purchasing power decreases.
- The real value of money decreases.

### Fisher equation

• Relationship between nominal interest rate (*i*) and real interest rate (*r*):

$$r = i - \pi \tag{20}$$

• Fisher equation:

$$i = r + \pi \tag{21}$$

 Countries which have higher inflation rates also have higher nominal interest rates.

#### Relationship between inflation and nominal interest rates



Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

#### Fisher equation

- The real interest rate that the borrower and lender *expect* when the loan is made: Ex ante real interest rate.
- Ex ante:  $i E\pi$
- The real interest rate that is actually *realized* is called: Ex post real interest rate.
- Ex post:  $i \pi$
- The two real rates differ, in case that realized inflation differs from expected inflation  $\pi \neq E\pi$

#### Fisher equation: Ex post

• Relationship between nominal interest rate (*i*) and real interest rate (*r*):

$$r = i - \pi \tag{22}$$

• Fisher equation:

$$i = r + \pi \tag{23}$$

 Countries which have higher inflation rates also have higher nominal interest rates.

### Fisher equation: Ex ante

• Relationship between nominal interest rate (*i*) and the expected real interest rate (*Er*):

$$Er = i - E\pi \tag{24}$$

• Fisher equation:

$$i = Er + E\pi \tag{25}$$

- Unfortunately: The textbook does not differentiate between the expected and realized real interest rate.
- Textbook uses the very same symbol: r

$$i = r + E\pi \tag{26}$$

#### Money demand depends also on the interest rate

- When people hold money, they are NOT earning the nominal interest rate (*i*).
- The nominal interest rate is the opportunity cost of holding money.
- The larger the interest rate, the lower the demand for money (=liquidity L).

$$\frac{M^d}{P} = L(i, Y) \tag{27}$$

### Linkages: A new loop



Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

#### Expectations for tomorrow drive prices already today

$$\frac{M}{P} = L(i, Y) \tag{28}$$

- Today's nominal interest rate depends on the inflation expectations for the future.
- Textbook:  $i = r + E\pi$

$$\frac{M}{P} = L(r + E\pi, Y) \tag{29}$$

- Price level today depends on inflation expectations.
- What influences inflation expectations?
- The expected monetary policy in the future.
- "Expectations of higher money growth in the future lead to a higher price level today."

#### Expectations drive prices already today

- The price level depends on a weighted average of the *current* money supply AND the money supply to prevail in the *future*.
- Inflation is driven by both: Current growth in the money supply and its expected future growth.

### Layman's view

• Layman's judge that the cost of inflation is higher compared to economists.

Stable inflation rates:  $\pi_t = \pi_{t+1} = \pi_{t+2} = 6\%$ 

- $\bullet\,$  Shoeleather cost: Lower levels of money holdings  $\Rightarrow\,$  more visits at the ATM.
- Menu costs
- Larger variability of relative prices, in case that nominal prices are adjusted at different points in time.
- Tax laws: 100 USD  $\Rightarrow$  106 USD

### The cost of high and unstable inflation rates

- High inflation = higher variability in inflation
- Redistribution between debtor and creditor
- Fixed pensions

# Adjustments of the real wage

- Due to a negative shock, the demand in one sector decreases.
- The real wage (W/P) in this sector has to decrease be 2 %.
- Three options:
  - 1.  $\frac{W\downarrow\downarrow}{\overline{P}}$
  - 2.  $\frac{\dot{\bar{W}}}{P\uparrow\uparrow}$
  - 3.  $\frac{W\uparrow\uparrow\uparrow\uparrow}{P\uparrow\uparrow\uparrow\uparrow\uparrow}$
- Without inflation, real wage will be stuck on a level which is too high
  ⇒ higher unemployment.
- Inflation "greases the wheels" of labor markets.

# Hyperinflation

- Hyperinflation: When the *monthly* inflation rate exceeds 50 % (more than 1 % a day!).
- Menu costs: German hyperinflation 1920's: In a restaurant, a waiter was standing up on a table very 30 minutes to call out the new prices

# Hyperinflation





# Even paper money has some intrinsic value



Carrying money to the grocery store is as burdensome as carrying the groceries back home  $_{Mankiw (p. 125)}$ 





#### The velocity of money increases tremendously





- Money is not counted anymore, but weighted!
- Money is loosing the function of account!

# Hyperinflation: It all starts with the government, *not* the central bank

- Government has three options to finance its spending
  - Taxes
  - Borrow via issuing bonds
  - Printing money
- When inflation picks up: Real value of tax revenues decreases ⇒ Print more money

$$\Delta M\% \uparrow + \Delta V\% = \Delta P\% + \Delta Y\%$$

# Velocity of money

- "Buy two pitchers of beer even when the second one looses its freshness"
- Velocity increases!

 $\Delta M\% + \Delta V\% \uparrow = \Delta P\% + \Delta Y\%$ 

#### Production decreases

#### • Production decreases

$$\Delta M\% + \Delta V\% = \Delta P\% + \Delta Y\% \downarrow$$

# How can hyperinflation be stopped?

- Introduce new currency maybe even dollarization.
- Fiscal reforms: Without fiscal reforms, underlying problem not solved.
- Decrease government spending, increase taxes.
- Government budget has to be balanced without printing money.