Chapter 10: Introduction to Economic Fluctuations

Prof. Dr. Georg Stadtmann stadtmann@europa-uni.de

Chapter 10: Introduction to Economic Fluctuations

- Introduction
 - Some remarks
- 10.1 The facts about the business cycle
 - GDP and its components
 - Unemployment and Okun's law
 - Leading indicators
- 10.2 Time horizons in macroeconomics
 - How the short run and the long run differs
- 10.3 Aggregate Demand
 - The quantity equation as aggregate demand
 - Why the aggregate demand curve slopes downward
 - Shifts in the aggregate demand curve
- 10.4 Aggregate Supply (AS)
 - The long run: The vertical aggregate supply curve
 - The short run: The horizontal aggregate supply curve
 - From the short to the long run
- 6 10.5 Stabilization policies
 - Shocks to aggregate demand
 - Shocks to aggregate supply

Introduction

- Business cycle: Short term fluctuations in output and employment.
- Fluctuations are not regular and not predictable, but irregular and (more or less) unpredictable.
- Questions:
 - What causes short-run fluctuations?
 - What model should we use to explain them?
 - Can policymakers avoid recessions?
 - If so, what policies and instruments should they use?

Some remarks

In this chapter...

- 1. ...we examine the data that describe short-run fluctuations.
- 2. ... we discuss key differences *how* economies behave in the short run and the long run.
- 3. ... we introduce the model of aggregate supply (AS) and aggregate demand (AD), which a lot of economists use to explain short-run fluctuations.

Real GDP growth in the US: Average about 3 %

Real GDP growth in the US

• Recession: Rule of thumb: Period of

- at least 2
- consecutive quarters
- of declining GDP (= growth rate of real GDP is negative)
- National Bureau of Economic Research (NBER) chooses
 - the starting date of each recession: The peak, and
 - the ending date of each recession: The through.
- Investment is far more volatile than consumption over the business cycle.

Growth in consumption and investment

Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

Okun's law

Mankiw, Macroeconomics, 10e, © 2019 Worth Publishers

IMPORTANT: Mankiw puts 'Percentage change in real GDP ' on the vertical axis!

Okun's law

% change in real GDP = 3 % – 2 \cdot change in the unemployment rate

Leading indicators

Leading indicators

- A very long list of leading indicators is presented.
- In the end: Leading indicators are far from a precise forecast of the future, as short-run economic fluctuations are largely unpredictable.
- Nonetheless it is a useful input factor...
- One example: Weekly initial claims for unemployment insurance.

Leading indicators

Initial claims of unemployment

Initial claims of unemployment

Initial claims of unemployment

Datei ljearbeiten Ansicht Grunnik Leszeichen Estras Hälle — 🗗 🗙														
al hotal Claims (ICSA) FRED S. X +														
\leftarrow	> (C 🗅	0 🔒	https://fred.stlouisfed	l.org/series/ICSA					P 0	፱ 🕁	lii\ C		<u>ال</u>
S SPIE	SEL ONUNE - Akt													
	0 2 U	bservation: 2020-10-24: 75 Ipdated: Oct 29,	1,000 (+ more) 2020	Units: Number, Seasonally Adjusted	Frequency: Weekly, Ending Saturday			14	5Y 10Y Max	2019-01-07 to	2020-10-24	EDIT G	RAPH 🗘	Â
	FF	RED. 📈	— Initial Claims											
		7,000,000								N				
		6,000,000								$ \land $				
	nber	5,000,000								$ \rangle$				
		4,000,000								\backslash				
	Nu	3,000,000												
		2,000,000												
		1,000,000								Ň	\sim	~	~	
		• =	2019-02	2019.05	2019.07 20	19.09	2019-11	2020-01	2020.03	2020.05	2020.07	2020.09		
			2019-03	2015-05	2010-07 20	,,,,,,	2013-11	2020-01	2020-05	2020-03	2020-07	2020-03	n An	
	,	-	1970	st recent and data is un	losidad Source	co: LLE Emple	1990	raining Administr	2000		2010	icfed org		
		J.S. recessions a	re snaded; the mo	si recent end date is unc	iecidea. Sourc	ce: 0.5. Emplo	syment and Tr	aining Administr	auon		Ired.suou	isted.org	13	
	5	Share Links %	Account Tools	4) 🕑 🌔	1	~
-	Q	Zur Suche Te	ext hier eingebe	n	o 🗐 🤤		🗄 🔼	🔊 💼	🗴 😫	🔯 🛃 🔯	^ d) 🖷	a ^{ge} Deu	09:40 05.11.202	, 🖓

Why one more model?

- Why do economists need different models for different time horizons?
- In the long run: Prices and nominal wages are flexible and can respond to changes in goods demand or supply.
- In the short run, prices are "sticky" at a predetermined level.
- Quantity theory (long run!): $M \downarrow \Rightarrow P \downarrow$
- But a reduction in money supply does not lead all companies to change the price tags, print new menus (=price lists), or reduce nominal wages *immediately*.

Blinder (1994): The frequency of price adjustments

How often do the prices of your most important products change in a typical year?

Frequency	Percentage of Firms
Less than once	10.2
Once	39.3
1.01 to 2	15.6
2.01 to 4	12.9
4.01 to 12	7.5
12.01 to 52	4.3
52.01 to 365	8.6
More than 365	1.6

- Perhaps different theories apply to different firms, depending on industry characteristics.
- Price stickiness may be a macroeconomics phenomenon without a single microeconomic explanation.

G. Stadtmann

10. Fluctuations

Blinder (1994): Theories of price stickiness

Theory and Brief Description	Percentage of Managers Who Accepted Theory
Coordination failure: Firms hold back on price changes, waiting for others to go first	60.6
Cost-based pricing with lags: Price increases are delayed until costs rise	55.5
Delivery lags, service, etc.: Firms prefer to vary other product attributes, such as delivery lags, service, and product quality	54.8
Implicit contracts: Firms tacitly agree to stabilize prices, perhaps out of "fairness" to customers	50.5
Nominal contracts: Prices are fixed by explicit contracts	35.7
Costs of price adjustment: Firms incur costs of changing prices	30.0
Procyclical elasticity: Demand curves become less elastic as they shift in	29.7
Pricing points: Certain prices (like \$9.99) have special psychological significance	24.0
Inventories: Firms vary inventory stocks instead of prices	20.9
Constant marginal cost: Marginal cost is flat and markups are constant	19.7
Hierarchical delays: Bureaucratic delays slow down decisions	13.6
Judging quality by price: Firms fear customers will mistake price cuts for reductions in quality	10.0

Introduction

- Aggregate demand (AD) is the relationship between the quantity of output demanded and the aggregate price level
- In detail: Chapters 11 to 13.
- Chapter 10: We rely on the quantity equation *to derive a simple, although incomplete,* aggregate demand curve

$$M \cdot V = P \cdot Y \tag{1}$$

- In the long run: $M \uparrow \cdot V = P \uparrow \cdot Y$
- However in the short run, prices are sticky (\overline{P}) .
- Which of the other variables adjusts in the short run?

Strictly mathematical matter

• Assumption: *M* and *V* are constant.

$$\bar{M} \cdot \bar{V} = P \cdot Y \tag{2}$$

- When the left hand side (LHS) is constant...
- the right hand side (RHS) also has to be constant $(\overline{P \cdot Y})$.
- When the price levels increases $(P \uparrow)$
- ... Y must go down:

$$\bar{M}\cdot\bar{V}=P\uparrow\cdot Y\downarrow \tag{3}$$

The aggregate demand curve

Why does AD slope downward? Economic intuition

- If the price level rises, each transaction requires more dollars, so that the number of transactions and thus, the quantity of goods and services purchased must fall.
- If the price level is lower, a given level of nominal money supply (*M*) allows a greater volume of transactions, which means a greater quantity of output is demanded.

Shifts in the aggregate demand curve

- Changes in money supply or
- changes in the velocity cause
- a shift of the AD curve.

Introduction: Two AS curves

- Long-run aggregate supply curve (LRAS)
- Short-run aggregate supply curve (SRAS)

Long run: AS is a vertical line

• Long run. The classical model is valid:

$$Y = F(ar{K},ar{L}) = ar{Y}$$

• Does not depend on the price level!

(4)

Shifts in aggregate demand in the long run

Short run aggregate supply curve

- Suppose all firms have issued price catalogs and
- it is too costly for them to issue new ones.
- All prices are stuck at the predetermined level.
- At these prices, firms are willing to sell as much as their customers are wiling to buy,
- and they hire just enough labor to produce the amount demanded.

Short run aggregate supply curve

Income, output, Y

Shifts in aggregate demand in the short run

G.	St	ad	tm	ıar	۱n

From the short to the long run

- Over long periods of time,
- prices are flexible,
- the aggregate supply curve is vertical,
- and changes in aggregate demand affect the price level
- but not the output.
- Over short periods of time,
- prices are sticky,
- the aggregate supply curve is flat,
- and changes in aggregate demand do not affect the price level
- but affect the output of goods and services.

Long-run equilibrium

A reduction in aggregate demand

Demand shock: Velocity increases

Supply shocks

- Bad harvest (but this is only temporary 1 year!)
- Oil price shock (permanent or temporary?)
- Innovations change production process
- Earthquake destroys capital stock
- More aggressive labor unions.

Supply shock: Earthquake

